If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+40x+25=75
We move all terms to the left:
16x^2+40x+25-(75)=0
We add all the numbers together, and all the variables
16x^2+40x-50=0
a = 16; b = 40; c = -50;
Δ = b2-4ac
Δ = 402-4·16·(-50)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{3}}{2*16}=\frac{-40-40\sqrt{3}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{3}}{2*16}=\frac{-40+40\sqrt{3}}{32} $
| 3x-16=6x+8 | | 3(-5)=2(x+2) | | 10x-24-3x=7x-12 | | -(x+3)-(-8-10x)=0 | | 1/4m+7=-5 | | 1/2x-8/x=12 | | 3+p=3.1/8 | | -3+11x=64 | | 8x+10=6x—4 | | (x-119)÷7=6 | | 3+p=31/8 | | 16=n+5 | | (8+x)+4=7x-16 | | 9x-3=108 | | 12x+2624=-2264 | | 13x+13+14x+4=180 | | 3x+42=4x-12 | | x+(x+24)=32 | | 12x+2264=2624 | | 3(a-7)=78 | | -6w+-14=4(-3+8) | | 12x-2264=2624 | | 3(a-21)=78 | | 3x-12.96=32.46 | | 2x+12.96=32.46 | | 89+(6x+19)=180 | | 2a+4=3a−32 | | 4x+6=3x+6+x | | 15x^2+75x-1560=0 | | (40+28)+x=180 | | 2x-32.46=12.96 | | .7x+1.5=3.6 |